Due to the lapse in federal government funding, NASA is not updating this website. We sincerely regret this inconvenience.

close window

Future Missions

Satellite Name Sponsor Exp.Life Time Purpose Launch Date
Approved by ILRS for Future SLR Tracking
e-kagaku-1 The e-kagaku Association of Global Science and Education, Japan Up to 1 yr Education of junior-high and high school students, fostering space engineers of next generation. Involving a wide range of age groups in project-based learning.

Establishing learning methods for satellite systems. Another objective is demonstrating SLR using mini-Mt. FUJI retroreflectors. Conducting orbit analysis by laser ranging, and publishing high-precision orbit information for the first time as a CubeSat.
Mid-September 2025
EPSILON-S JAXA Up to 5 Years, but SLR ranging will only be performed for a total of 2 weeks. The Epsilon S is a Japanese Solid Propellant Rocket specialized in carrying small to micro level satellites, and developed by JAXA and IHI Aerospace Corporation. SLR reflectors will be mounted on this PBS to determine its orbit and estimate its attitude motion from the ground. This is the first experiment in the world in which any SLR reflector is mounted on the upper stage of a launch vehicle to determine the orbit, and the first trial in the world to use SLR to estimate the attitude motion and improve re-entry prediction. TBD
Ex-Alta 3 University of Alberta
(AlbertaSat Student Group),
CANADA
Up to 1 yr Ex-Alta 3 is a 3U CubeSat with two primary scientific payloads, each with a scientific objective:
  1. characterizing ice, snow, and glacial regions within Canada. This will be achieved through determining and mapping snow extent and ice coverage, as well as measuring and comparing surface albedo in ice and snow-covered areas through remote sensing using an on-board multi-spectral imager.
  2. characterizing DC and AC magnetic fields at low Earth altitudes. This will be achieved via an on-board miniaturized, boom-mounted, digital fluxgate magnetometer (DFGM), which will measure magnetic fields in the inner and outer radiation belts and polar cap regions.
June 2026
HTV-X JAXA, Japan 1 yr HTV-X is the new unmanned spacecraft as the successor to the "Kounotori" (HTV). The main mission of the HTV-X is transporting cargoes to the International Space Stations (ISS). After departure of the ISS, there is technical demonstration phases to verify three different missions in orbit. Mt.FUJI mission is one of the missions and it is related to the Satellite Laser Ranging (SLR). The goals of Mt.FUJI mission are:
(1) to verify JAXA developed SLR reflector (named, Mt.FUJI) in orbit,
(2) to evaluate the accuracy of SLR-based attitude estimation using true data (telemetry of HTV-X),
(3) to evaluate the accuracy of GPS receiver positioning by comparing with SLR data.
SLR will be used to verify JAXA developed SLR reflector by detecting return light. Then, SLR will be used to obtain sufficient data to perform orbit determination and SLR-based attitude estimation, to evaluate the accuracy of the GPS receiver on HTV-X and quantitatively evaluation of SLR-based attitude estimation by comparing true attitude data (HTV-X telemetry).
October 21, 2025
MSS-1A Macau University of Science and Technology, China 5 yrs Survey the Earth’s geomagnetic and space environment May 21, 2023
Sentinel-6B Multi-agency ≥ 2030 Sea level monitoring & ocean surface topography November 2025
Future Satellites with Retroreflectors
CRISTAL (Copernicus polaR Ice and Snow Topography ALtimeter) EU/Copernicus, ESA 2035 Measure and monitor sea-ice thickness and overlying snow depth ≥ 2027
ETS-9 MEXT, JAXA, MIC, and NICT 16 yrs Engineering Test Satellite. Achieve next generation geostationary satellite communication. 2025
Galileo (2nd Generation) ESA ≥ 10 yrs Second generation satellites for the Galileo GNSS system. Starting in 2024
GENESIS ESA   Colocation of the four space geodesy techniques (GNSS, SLR, VLBI, DORIS) in space. 2028-2029
GPS IIIF DoD, DoT 15 yrs Provide improved positioning, navigation & timing. Colocation in space (SLR & GNSS). TBD 2026+
GRITSS (Geodetic Reference Instrument Transponder for Small Satellites) NASA ∼ 1 yr Accurately tie collocated VLBI, SLR and GNSS systems to improve the Terrestrial Reference Frame.. June 2026
HY-2E, 2F National Satellite Ocean Application Service (NSOAS), China ≥ 3 yrs Oceanographic remote sensing satellite with a radar altimeter and other instrumentation 2027-2030
Lunar Pathfinder ESA/NASA   Navigation support in lunar orbit with a lunar laser retroreflector 2026/Q4 - 2027
GRACE-C NASA/DLR ≥ 7 yrs Monitor mass change in the Earth system. Continue GRACE, GRACE-FO time series of data. 2028
MAGIC (Mass change And Geosciences International Constellation) ESA, NASA ≥ 4 yrs Form a Bender constellation with the Mass Change mission (NASA/DLR) to monitor mass change with higher temporal & spatial resolution. 2031-2032
NASA CLPS (PRISM) CP-11 NASA, ESA   MoonLIGHT Pointing Actuator (MPAc), a Next Generation Lunar Retroreflector (PI. Marco Muccino). onboard the Intuitive Machines Lunar Lander to Reiner Gammer ≥ 2024
Sentinel-3C EU/Copernicus, ESA, EUMETSAT ≥ 2031 Ocean surface topography measurement & ocean observation 2024
Sentinel-3D EU/Copernicus, ESA, EUMETSAT ≥ 2035 Ocean surface topography measurement & ocean observation 2028

Related information