Quick Links
SLR Related Publications for 2024
Acciarini G., Brown E., Berger, T et al. (2024). “Improving thermospheric density predictions in low-Earth orbit with machine learning”, Space Weather, 22, e2023SW003652, doi:10.1029/2023SW003652.
Agnew, D.C. (2024). “A global timekeeping problem postponed by global warming”, Nature, doi: 10.1038/s41586-024-07170-0.
Cheng M.K. (2024). “An updated estimate of geocenter variation from SLR data”, Remote Sensing, 16(7), doi:10.3390/rs16071189.
Conrad A., Axelrad P., Desai S., Haines B. (2024). “Sentinel-6 Michael Freilich precise orbit determination using PODRIX and TriG receiver measurements”, J. Geodesy, 98(39), doi:10.1007/s00190-024-01842-5.
Daras I., March G., Pail R. et al. (2023). "Mass-change And Geosciences International Constellation (MAGIC) expected impact on science and applications", Geophysical Journal International, 236(3), 1288–1308, doi: 10.1093/gji/ggad472.
Drożdżewski M. and Sośnica K. (2024). “Troposphere delay modeling in SLR based on PMF, VMF3o, and meteorological data”, Prog Earth Planet Sci 11, 12, doi:10.1186/s40645-024-00613-2.
Fernández J., Peter H., Fernández C. et al. (2024). “The Copernicus POD Service”, Adv. Space Res., In Press (March 5, 2024), doi: 10.1016/j.asr.2024.02.056.
Fienga A., Minazzoli O. (2024). “Testing theories of gravity with planetary ephemerides”, Living Reviews in Relativity, 27(1), doi: 10.1007/s41114-023-00047-0.
Gałdyn F., Sośnica K. (2024). “Impact of the combination and replacement of SLR-based low-degree gravity field coefficients in GRACE solutions”, Prog Earth Planet Sci 11, 7, doi:10.1186/s40645-024-00608-z.
Gałdyn F., Sośnica K., Zajdel R., Meyer U., Jäggi A. (2024). “Long-term ice mass changes in Greenland and Antarctica derived from satellite laser ranging”, Remote Sensing of Environment, 302, 113194, doi: 10.1016/j.rse.2024.113994.
Gao T., Xue L., Ye S. (2024). “Near-infrared lunar laser ranging: Research on pointing error of Lunokhod 2 corner reflector based on effective echo signal broadening”, Infrared Physics and Technology, 137, 105095, doi: 10.1016/j.infrared.2023.105095.
Geng R., Wu Z., Huang Y. et al. (2024). “A complete analysis of the link uncertainty budget for pulsed laser time transfer on China space station”, Adv. Space Res., 73(5), 2548–2566, doi: 10.1016/j.asr.2023.12.022.
Hampf D., Niebler F., Meyer T. et al. (2024). “The miniSLR: a low-budget, high-performance satellite laser ranging ground station”, J. Geodesy, 98(8), doi: 10.1007/s00190-023-01814-1.
Hao Y., Xiaoya W., Yabo L. (2024). “Impact of Earth Radiation Pressure Physical Analytical Model on Satellite Laser Ranging Orbit Determination”, Earth and Planetary Sci., 3(1), 9–20, doi: 10.36956/eps.v3i1.967.
Kang Z., Bettadpur S., Save H. et al. (2024). “GPS-Based Precise Orbit Determination of LEO Satellites Using Space-Based Double-Differenced Observations”, J Astronaut Sciences, 71, 25, doi: 10.1007/s40295-024-00444-9.
Lejba P. (2024). “Orbit Determination of Chinese rocket bodies from the picosecond full-rate laser measurements”, Artificial Satellites, 58(4), 256–277, doi: 10.2478/arsa-2023-0010.
Li R., Huo Y., Wen D. et al. (2024). “Calibration method of the right-angle error of a hollow corner-cube retroreflector based on an independent autocollimator”, Applied Optics, 63(3), 668–675, doi: 10.1364/AO.510872.
Li Y., Wang X., Zhang S., Xi K. (2024). “The influence of considering atmospheric wind field for atmospheric drag on SLR orbit determination”, Adv. Space Res., (In press, Apr. 16, 2024), doi: 10.1016/j.asr.2024.04.023.
Lucchesi, David et al. (2024). “Fundamental physics measurements with Galileo FOC satellites and the Galileo for science project. I. A 3D-CAD and a box wing for modeling the effects of nonconservative forces”, PHYSICAL REVIEW D 109, 062004, DOI: 10.1103/PhysRevD.109.062004.
Mozzato M., Bemporad G., Enzo S. et al. (2024). “Concept and Feasibility Analysis of the Alba Cubesat Mission”, Aerotecnica. Missili Spatio, doi: 10.1007/s42496-024-00205-9.
Nie Y., Shen Y., Chen J., ∓ Chen Q. (2024). “Improved GRACE‐FO gravity field solution by combining different accelerometer transplant products”, J. Geophys. Res: Solid Earth, 129, e2023JB028013, doi:10.1029/2023JB028013.
Otsubo T., Araki H., Yokota Y., Kobayashi M., Kouno K., Matsumoto T., Nakajima J., Kensuke K., & Aoyama Y. (2024). “Low-cost, compact, multi-purpose SLR system, Omni-SLR”, Poster at the 13th IVS General Meeting & 25th Anniversary, Tsukuba, Japan, doi:10.5281/zenodo.10884982.
Peron R., Negusini. M. and Tornatore V. (2024). “METRIC: a mission concept for a spacecraft aimed at upper atmosphere mapping, gravitational physics, and geodesy”, Poster at the 13th IVS General Meeting & 25th Anniversary, Tsukuba, Japan, doi: 10.5281/zenodo.10844263.
Rivera, J., Bettadpur, S., Griffin, J. et al. (2024). “Measuring 1-mm-accurate local survey ties over kilometer baselines at McDonald Geodetic Observatory”, J. Geodesy, 98(46), doi:10.1007/s00190-024-01853-2.
Sabhlok S., Battat J.B.R., Colmenares N.R., Gonzales D.P., Murphy T.W. Jr. (2024). “A clear case for dust obscuration of the lunar retroreflectors”, Icarus, 116113, doi: 10.1016/j.icarus.2024.116113.
Sapio, Feliciana et al. (2024). “Fundamental physics measurements with Galileo FOC satellites and the Galileo for science project. II. A box wing for modeling direct solar radiation pressure and preliminaries orbit determinations”, PHYSICAL REVIEW D 109, 062005, DOI: 10.1103/PhysRevD.109.062005.
Saquet E., Couhert A., Peter H., Arnold D. Mercier F. (2024). “Millimeter accuracy SLR bias determination using independent multi-LEO DORIS and GPS-based precise orbits”, Adv. Space Res., 73(1), 304–316, doi: 10.1016/j.asr.2023.07.014.
Schrama E.J.O. and Visser P.N.A.M. (2024). "Choices for temporal gravity field modeling for precision orbit determination of CryoSat-2", Adv. Space Res., 73(1), 31-41, doi: 10.1016/j.asr.2023.11.034
Sekido M., Morinaga T., Satomura M., Nakazono J., Ichikawa R., Kunimori H. (2024). “Status report of Koganei 11-m antenna and local tie survey”, Poster at the 13th IVS General Meeting & 25th Anniversary, Tsukuba, Japan, doi: 10.5281/zenodo.10826416.
Steindorfer M.A., Koidl F., Kirchner G. et al. (2024). “Satellite laser ranging to Galileo satellites: symmetry conditions and improved normal point formation strategies,” GPS Solutions, 28(73), doi: 1007/s10291-024-01615-9.
Steurer, Jakob (2024). “Development of a system for airborne object detection to ensure safe operation of laser-optical ground stations”, Masters thesis, Universität Stuttgart, Germany. URL: https://elib.dlr.de/202844/
Tseng T.P., Tsai Y.H., Hsieh C.S. (2024). "Characterization of Galileo yaw attitude on tidal loading and range bias in SLR-based orbit validation", GPS Solutions, 28, doi:10.1007/s10291-023-01571-w
Uz M., Akyılmaz O., Shum, C.K. et al. (2024). “High-resolution temporal gravity field data products: Monthly mass grids and spherical harmonics from 1994 to 2021”, Scientific Data, 11(71), doi: 10.1038/s41597-023-02887-5
Vielberg, Kristin (2024). “Thermosphere and radiation effects in forward and inverse non-gravitational force modelling”, Ph.D Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany. URL: https://hdl.handle.net/20.500.11811/11288
Waldron Z.C., Garcia-Sage K., Thayer J.P. et al. (2024). “Assessing thermospheric neutral density models using GEODYN's Precision Orbit Determination”, Space Weather, 22(2), e2023SW003603, doi: 10.1029/2023SW00360.
Xia F., Zhou S., Chen D. et al. (2024). “Analysis and diagnosis of abnormal SLR validation results for BeiDou-3 SECM-B MEO C225 and C226 satellite orbits”, Adv. Space Res., doi: 10.1016/j.asr.2024.05.004.
Xue H., Zhang Z., Deng S. et al. (2024). “Improved simulated annealing algorithm on the design of satellite orbits for common-view laser time transfer”, Remote Sensing, 16(3), 472, doi: 10.3390/rs16030472.
Zajdel R., Nowak A. & Sośnica K. (2024). “Satellite laser ranging to BeiDou-3 satellites: initial performance and contribution to orbit model improvement”, GPS Solutions, 28(100), doi:10.1007/s10291-024-01638-2
Zeitlhöfler J., Bloßfeld M., Lemoine F.G., Seitz F. (2024). “Quality assessment of the nominal attitude model of TOPEX/Poseidon using quaternion data”, Adv. Space Res., In press (March 18, 2024).
Zelensky N.P., Lemoine F.G., Zeitlhöfler J., Bloßfeld M., Yang X. (2024). “TOPEX/Poseidon spacecraft body and solar array quaternions (Version 01A) [Data set]” Zenodo doi: 10.5281/zenodo.10795818.
Zhang K., Li X., Jiang W. et al. (2024). "Geocenter motion derived from multi-LEO precise orbit determination based on GNSS observations and dynamic force models", GPS Solutions, 28(8), doi:10.1007/s10291-023-01546-x
Zhang M., Müller J., Biskupek L. (2024). "Advantages of combining Lunar Laser Ranging and Differential Lunar Laser Ranging", Astronomy & Astrophysics, 681, A5, doi:10.1051/0004-6361/202347643