

Space Debris Laser in Zimmerwald

Design Considerations

- 47W, 200Hz laser system
- piggy-back on 0.8m ZimMAIN
 - no interference with geodetic SLR operations
 - requires separate transmit optics and new receiver chain
 - might be too heavy
 - requires new tracking and control software
- piggy-back on ZIMLAT
 - not an option because new 1kHz geodetic laser system to be mounted piggy-back on ZIMLAT
- ZIMLAT Coudé
 - could profit from existing receiver chain and software
 - transmit/receive switch can handle 100/200Hz
 - time sharing with geodetic SLR operations
- > preferred solution to start with

(bistatic system to be evaluated in future)

Space Debris Laser System

INNOLAS EVO II-200 Laser specifications

Wavelength	1064 nm
Pulse repetition rate	200 Hz (100 Hz subsampling)
Pulse length (min)	7 ns
Pulse energy (adjustable)	<1 mJ - 236 mJ
Pulse-to pulse timing jitter	±1 ns
Average power (@200Hz)	< 0.2 W - 47 W
Beam diameter (1/e)	8mm
Beam divergence	<0.5 mrad
Polarization	Linear (horizontal)

ZIMLAT Coudé Configuration

Slide

Challenges of a Monostatic Coudé Configuration

Calibration Measurements

- transmit/receive switch open during calibration
 - → stray light/reflections from the telescope enter receiver
- → need to attenuate transmission beam (also required for eye safety when using terrestrial target)

Beam Attenuation

- < 10μJ required
- \rightarrow 4*10⁻⁵ attenuation
 - 10⁻² internal attenuation
 - 10⁻³ external attenuation

Challenges of a Monostatic Coudé Configuration

Transmit – Receive Conflicts

- problem: time of flight ~ x*pulse repetition interval → laser transmitted while receive switch open (would destroy receiver)
- standard procedure:
 - change laser repetition rate from 100Hz to 109Hz (200Hz to 218Hz) (no issue for geodetic 1W laser)
- > requires 6 separate working points
 - laser parameters needed to be optimized for each working point (thermal conditions!)
 - 6 working points:
 - 101.5 Hz (±1.5 Hz)
 - 104.5 Hz (±1.5 Hz)
 - 107.5 Hz (±1.5 Hz)
 - 193.2 Hz (±3.4 Hz)
 - 200.0 Hz (±3.4 Hz)
 - 206.8 Hz (±3.4 Hz)
- "afterglow" of lenses in the transmit/receive path not yet quantified

Quantitative Analysis: Receiver Operating Characteristic Curves

Case A: High Signal-to-Noise

(1ns x 2s rectangular bins)

Case B: Low Signal-to-Noise

How can we improve the performance?

Slide

Bin length in x-axis

Optimization of Bins Bin length in y-axis

Bin shape: hexagons

- Reduction of sampling bias → Edge effect
- Low perimeter-to-area ratio → No overlaps or gaps
- Capability to adapt to curve patterns
- Correlations between all possible combinations

Filtered signal with new method

