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Numerical Integration

ODEX Integrator

E. Hairer et al., Solving Ordinary Differential Equation I, 1993

Optimized for quadruple precision (10
−32).

Dimensionless Equations of Motion

We compute forces and momentums in the ICRS (Solar System Barycenter) by substituting
variables :

r −→ rc χ and t −→ tc τ , then, d
2r = rc d

2χ and
1

dt2
=

1

t2
c

×
1

dτ 2
.

The Dimensionless 2 Bodies Problem

d
2χ

dτ 2
= −

µt2

c

r3
c

χ

‖χ‖3
, we put :

µt2

c

r3
c

= 1 with µ = G(MT + ML)

Identifying to Kepler 3rd law : µ = n2a3, we find tc = 1/n and rc = a.
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Fitting the Numerical Solution

Observables

The dynamical model is fitted to an ephemeride (INPOPXX, ELPXX, DEXXX). Several

possibilities for the minimisation of observables :

‖EM‖eph−‖EM‖int

‖0 − MephMint‖
T(φ, θ, ψ)eph−T(φ, θ, ψ)int or cosϕeph−cosϕint

with cosϕ = cosφ cosψ+sinφ sinψ cos (π−θ).

Fit of the solution to LLR datas thanks CAROLL.

Least-Squares Method

g(x) =
1

2
‖f (x) − y‖

2
∈ R

+
=⇒ g

′
(x) = 0

where e.g. y = ‖EM‖eph
t and f (x) = ‖EM‖int

t with t = 0, · · · , tfin. If x0 is a closed solution of x, we
have δx = x − x0 and approximating g by it Taylor expansion give

δx = {T
f
′(x0) · f

′(x0)}
−1 · {T

f
′(x0) · [y − f (x0)]}

where f ′(x0) is the partial derivative matrix.
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Computation of Matrix f ′(x)

Initial Solution Vector

x = T(p1, · · · , pm, χ1, · · · , χ3, χ̇1, · · · , χ̇3). p physical parameters vector, χ dimensionless position
vector and χ̇ dimensionless velocity vector.

Numerically

∂f (x)

∂xk
=

f (x
1, · · · , x

k+ǫ, · · · , x
m+6) − f (x

1, · · · , x
k−ǫ, · · · , x

m+6)

2ǫ
+ o(ǫ2)

From the Variation’s Equation

l = 1, · · · ,m+6 et i = 1, · · · , 3 we can integrate the 6×(m+6) following equations :


















d

dt

(

∂χi

∂xl

)

= Ẋ
i
l

d

dt

(

Ẋ
i
l

)

=
3
∑

k=1

∂Ai

∂χk

∂χk

∂xl
+

3
∑

k=1

∂Ai

∂χ̇k

∂χ̇k

∂xl
+

m
∑

k=1

∂Ai

∂pk

∂pk

∂xl

where A = χ̈(x) = χ̈(p,χ, χ̇) is the dimensionless Earth-Moon acceleration vector.
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Modeling

Main Problem

Earth, Moon and Sun are considered as ponctual masses. Sun describes a keplerian ellipse, the
ecliptic, around the Earth-Moon barycenter.

Restricted Planetary Perturbations

Situation is the same as before, and planetary perturbations are considered. Planets and Pluto
describe keplerian ellipses around Sun.

Forced Planetary Perturbations

Only the Earth-Moon vector is integrated. Planetary perturbations are directly taken from an
existing planetary ephemeride at each time step.

N Bodies Problem

We compute the Newtonian interactions between all planets, Moon, Sun and Pluto.
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Relativistic Interactions

Masse/Energy of the System

M =
∑

A

µ∗
A with µ∗

A = µA







1 +
ṙ2

A

2c2
−

1

2c2

∑

B6=A

µB

rAB

+ O(c
−4)







SSB secular drift of
0.5 mm/century

Solar System Barycenter

1 Position and velocity of SSB are taken from a given planetary ephemeride at each time step.

2 We impose SSB to be fixed at the frame’s origin (ICRS) at each time step.

3 We impose SSB to be fixed at the frame’s origin (ICRS) at beginning of the integration.

Description

We compute the relativistic effects of all bodies through a Parametrized Post-Newtonian modeling
(β=1, γ=1), considering General Relativity as a perturbation to Newtonian gravity. Each body is
considered as generating a locally spherically symmetric gravitationnal field.
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Earth Figure

Spherical Harmonic

The Earth is no more considered as a ponctual mass but as an axisymmetric body. We consider
only zonal harmonics up degree 4 (J2, J3, J4).

Earth Nutations and Precession Motion

Earth precession motion is forced with P03 solution (Capitaine et al., 2003).

Earth nutations are forced with SOFA’s routines (Standards Of Fundamental Astronomy)
http ://www.iausofa.org/
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Tides

Love’s Hypothesis

Each harmonic corresponding to the variations of the potential of a body (Earth e.g.) at its surface
(r′ =R, ϕ′,λ′) is proportional to the same harmonic of the potential of a perturber (Moon or Sun
e.g.).

∆ψ(R, ϕ′,λ′) =

+∞
∑

n=2

n
∑

m=0

∆ψnm(R, ϕ′,λ′) =

+∞
∑

n=2

n
∑

m=0

knmVnm(R, ϕ′,λ′)

Dissipation

The deformation of a body is not immediate, the response is related to its internal structure and
produces dissipation. It leads to a time delay (τnm) between the bulge and the perturber direction.
So, the deformation due to a perturber at time t is due to its position at time t − τnm.
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Tides on Earth

Tides DE200

The Moon is the only tide raising body on Earth and the only interacting body. The Earth is
considered elastic with only one k and one τ . During the time τ , the orbital motion of the Moon is

neglected and we suppose that the phase lag is only due to Earth spin (ψ̇∼ cst). So, phase angle

between the tidal bulge and the Earth-Moon vector (δ=τψ̇) is constant.

Tides DE405

The Moon and the Sun are the tide raising bodies on Earth. The Moon is the only interacting body
with the tidal bulge. We consider only the modification of degree 2 of Earth potential. This
modification is taken into account through the variation of the potential Stokes coefficients
considering anelastic Earth.







C2m(t) = CR
2m + ∆CT

2m (k2m, rg(t−τ2m))

S2m(t) = SR
2m + ∆ST

2m (k2m, rg(t−τ2m))

with m = 0, 1, 2

For Earth, the delayed position is evaluated at second order in τ2m

rg(t−τ2m) = rg(t) − τ2m ṙg(t) +
τ 2

2m

2
r̈g(t) + o(τ

2

2m)
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Moon Potential

Spherical Harmonic

The Moon is also considered as an extended body. We consider all harmonics up degree 4 (Cnm

and Snm with n=2→4 and m=0→n).

Non-Rigid Moon

The Moon is considered as an elastic body. We consider deformations due to tidal effects (Earth
and Sun are the tide raising bodies) and spin. ω represents the spin velocity vector of the Moon
expressed in the frame rotating with Moon.






C2m(t) = CR
2m + ∆CT

2m (kM, rg(t−τM)) + ∆CS
2m (kM, ω(t−τM))

S2m(t) = SR
2m + ∆ST

2m (kM, rg(t−τM)) + ∆SS
2m (kM, ω(t−τM))

with m = 0, 1, 2

For Moon, rg(t−τM) and ω(t−τM) are computed by RK4 integration between t and t − τM.
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Moon Librations

Euler Angles

Moon’s orientation (RM) can be identified in the ICRS (RICRS) thanks to Euler angles.

eNex

ey

ez
eZ

eX

eY

φ ψ

θ

Euler Equations of Motion

We integrate T(φ̈, θ̈, ψ̈) = f (ω̇, φ, θ, ψ, φ̇, θ̇, ψ̇) by computing ω̇.

ω̇ = I
−1.
{

∑

N ext − İ.ω − ω×I.ω
}

Moon inertia matrix is time varying I(t) and depends on C2m(t) and S2m(t).
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ELP

Historic

Developped since the 70’s by J. Chapront, M. Chapront-Touzé and G. Francou, it is a
semi-analytical solution to the dynamical equations governing the Moon gravity center motion. The
last solution (ELP-MPP02, 2003) takes into account all effects with theoretical signal larger than
one millimeter over the Earth-Moon vector. By decreasing importance,

The Main Problem (10
8 − 10

9 cm)

Planetary Perturbations (10
4 − 10

5 cm)

Earth Figure (10
4 − 10

5 cm)

General Relativity (10
2 − 10

3 cm)

Tide on Earth (10
2 − 10

3 cm)

Effects due to the Moon Orientation (10
1 − 10

2 cm).

ELP-MPP02 is the ephemeride currently used by POLAC for the reduction and the analyse of LLR
datas.

Bidart, P., 2001, A&A, 366, 351.
Chapront-Touzé, M., Chapront, J., 1988, A&A, 190, 342.

Chapront-Touzé, M., Chapront, J., 1997, Celest.Mech., 66, 31.
Chapront, J., Chapront-Touzé, M., Francou G., 2002, A&A, 387, 700.

A. Bourgoin, C. Le Poncin-Lafitte, S. Bouquillon, et. al. 19th INTERNATIONAL WORKSHOP ON LASER RANGING



Software Features

Physical Dynamical Model

Some Applications

Improvement of the Semi-Analytical ELP Theory

Test of Gravity in Weak Field

ELP Solution

Reference Plane (Centered on Earth, parallel to ecliptic)

•

•

•Earth

Moon

Sun

G

x (γ′
2000

)

y

z

w3

w2 ω′

w1

v′

•

•

•

S
E

M

G

D = w1 − v′

F = w1 − w3

l = w1 − w2

l′ = v′ − ω′

Solution to the Main Problem

∑

i1,··· ,i4

[Ai1,··· ,i4 +
∑

j

B
i1,··· ,i4
j δx

0

j ].

{

cos

sin

}

(

i1D̄ + i2F̄ + i3̄l + i4l
′)

Ai1,··· ,i4 and B
i1,··· ,i4
j

are numerical coefficients and δx0

j are literal variations of the constants used

for the construction of the solution.
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Main Limitations

Comparison with INPOP08

In his pure semi-analytical form it does not reach a millimetric precision. The RMS over +100/-100
years after fitting to INPOP08 gives

∆V =1.56 mas ∆U=0.56 mas ∆r=71 cm

Explanations

Slow convergence of Poisson series (e.g. planetary effects).

Truncation of series for their computation.

Implicit physical parameters impossible to fit.

Implicit physical parameters impossible to update.

Solutions with Numerical Integration

Comparing Numerical to semi-analytical, effect by effect, can provide the true precision of a
series.

Replacing a too slow convergent series by its numerical counterpart (e.g. planetary effects).
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Testing Metric Theories of Gravity

Principle

Be able to simulate observables in different theories of gravity. Compute equations of motion from a
given metric theory.

Weak Field

gαβ = ηαβ + hαβ with |hαβ|≪1 and ηαβ Minkowski metric tensor : η00 = 1 ; η0i = 0 ; ηij = −δij

Geodesics Equation

Expressed in function of the coordinate time x0 = ct :

d
2xi

dx02
= −Γi

αβ

dxα

dx0

dxβ

dx0
+ Γ0

αβ

dxα

dx0

dxβ

dx0

dxi

dx0
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Testing Metric Theories of Gravity

Equations of motion

ẍ
i
= −

c2

2
∂ih00 −

c2

2
hik∂kh00 +

c2

2
∂0h0i +

c

2
∂0h00 ẋ

i

+ c∂0hik ẋ
k + c(∂kh0i − ∂ih0k)ẋ

k + ∂kh00 ẋ
k
ẋ

i

+ (∂mhik −
1

2
∂ihkm)ẋ

k
ẋ

m + O(c
−4).

with ẋi = dxi/dt. Knowing hαβ et hαβ,γ we can deduce the equations of motion in any metric theory
of gravity which can be expressed under the form gαβ = ηαβ + hαβ . Actually, hαβ = h′αβ + δhαβ

where h′αβ corresponds to General Relativity and δhαβ to the alternative theory.

A. Hees et al., Radioscience simulations in general relativity and in alternative theories of gravity,
2012, Classical and Quantum Gravity

A. Bourgoin, C. Le Poncin-Lafitte, S. Bouquillon, et. al. 19th INTERNATIONAL WORKSHOP ON LASER RANGING



Software Features

Physical Dynamical Model

Some Applications

Improvement of the Semi-Analytical ELP Theory

Test of Gravity in Weak Field

Thank you for your attention !
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