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Modeling the atmosphere: paradigm shift

Past Present

A priori state of the atmosphere is
not known

A priori state of the atmosphere is
known

In situ 1D measurements of
meteorological parameters

Using global 4D models of
the atmosphere and ocean

Path delay: Marini-Murray mapping
function

Numerical integration of wave
propagation equations through the
heterogeneous media

Atmosphere pressure loading:
regression coefficients

Atmosphere pressure loading:
direct integration

Land water storage loading:
no model

Land water storage loading:
direct integration
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What is the numerical weather model?

Numerical weather models (NWM) reached that level of sophistication that
one can deduce the 4D state of the atmosphere.

How does an NWM work:

• we solve differential equat. and predict state of the atmosphere for ∆T ;

• we ingest observations;

• we reconcile them during incremental analysis update (IAU) phase.

Observations are assimilated to the model using the 3D-Var scheme.
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Slant path delay computation

Model used:

MERRA: Since 1979.01.01 72 lev ×0.5◦ × 0.67◦ × 6h Latency: 40d

GEOS FPIT Since 2000.01.01 72 lev ×0.5◦ × 0.67◦ × 3h Latency: 12h

Basis: Fermat principle (1662)

• Variational problem −→ differential equations for the trajectory;

• Numerical solution of equations −→ trajectory;

• Integration of refractivity −→ path delay for each station;

• Path delays at a grid −→ expansion over elevation, azimuth, and time;

• Ingestion of the expansion coefficients into a data analysis package
(f.e. GEODYN).
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Dataset used:

MERRA 1979.01.01 – 2014.09.30,

GEOS FPIT 2000.01.01 – Present,

168 SLR stations

Updated 4 times a day

Latency: 8–24 hours.

Expansion coefficients are for path delays are computed outside of GEODYN.

Does not need in situ atmospheric pressure measurements.

Slide 5(17)



Validation

VLBI data are processed with a priori path delay from GEOS FPIT

Residual path delay in zenith was adjusted. Average statistics:

Error of wet path delay prediction is ∼10%

A priori path delay at 532 nm can be predicted with accuracy 1–2 mm
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Mass Loading service — what is new?

• Using higher resolution models

• Improvement in accuracy

• Extension towards land water storage loading,

non-tidal ocean loading, tidal ocean loading

• On-demand computation

• Improvement in latency
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Geophysical Models

Old models (2002): New models (2014)

Atmosphere:

NCEP Reanalysis: 2.5◦ × 2.5◦ × 6h MERRA: 72× 0.5◦ × 0.67◦ × 6h

1979.01.01 – now; Latency: 2.5–3.5d 1979.01.01 – now; Latency: 20–60d

GEOS-FP: 72× 0.25◦ × 0.3125◦ × 3h

2011.09.01 – now: Latency: 9–16h

GEOS-FPIT: 72 × 0.5◦ × 0.66◦ × 3h

2000.01.01 – now; Latency: 8–30h

Land water Storage:

none MERRA: 0.5◦ × 0.67◦ × 1h

GEOS-FPIT: 0.5◦ × 0.67◦ × 1h

GLDAS NOAH025 0.25◦ × 0.25◦ × 3h

2000.02.24 – now; Latency: 35–75d

Non-tidal ocean loading:

Ocean water mass conservation condition OMCT : 1.875◦ × 1.875◦ × 6h

2001.01.01 – now; Latency: 30–90d
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Loading computation

Traditional approach (Farrell, 1972): pressure difference ∆P −→ applying
land-sea mask L −→ convolution integral:

~ur(~r, t) =
∫ ∫

Ω

L(φ′, λ′) ∆P (~r ′, t)Gr(ψ(~r, ~r′)) cosφ′ dλ′dφ′

~uh(~r, t) =
∫ ∫

Ω

~q(~r, ~r ′)L(φ, λ) ∆P (~r ′, t)Gh(ψ(~r, ~r′)) cosφ′ dλ′dφ′

where Green’s functions are defined

Gr(ψ) =
fa

g2
0

+∞∑
n=0

h
′
nPn(cosψ) Gh(ψ) = −fa

g2
0

+∞∑
n=1

l
′
n

∂Pn(cosψ)
∂ψ

Complexity: O(d4)
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Spherical harmonics approach: pressure difference −→ upgridding −→
applying land-sea mask L −→ spherical harmonic transform −→ scaling with
Love numbers −→ inverse spherical harmonic transform.

V m
n (t) =

1
ρ̄⊕ g0

3h′

2n+ 1

∫ ∫
Ω

L(φ, λ) ∆P (t, φ, λ)Y m
n (φ, λ) cosφdφ dλ

Hm
n (t) =

1
ρ̄⊕ g0

3l′

2n+ 1

∫ ∫
Ω

L(φ, λ) ∆P (t, φ, λ)Y m
n (φ, λ) cosφdφ dλ

,

DU(φ, λ) =
i=m∑
i=0

j=n∑
j=−n

V i
j Y

i
j (φ, λ)

DE(φ, λ) =
i=m∑
i=0

j=n∑
j=−n

Hi
j

∂Y i
j (φ, λ)
∂λ

DN(φ, λ) =
i=m∑
i=0

j=n∑
j=−n

Hi
j

∂Y i
j (φ, λ)
∂φ

.

Complexity: O(d3)
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Enhancements:

• Up-gridding pressure field to degree 2047 (4.9 km) for ocean loading and
degree 1023 (9.8 km) for other loadings.

• Refined land-sea mask GTOPO30 with an original resolution 30′′.

• Using 3D atmosphere to compute surface pressure after up-gridding.

• Clean “humidity voids” in the atmosphere pressure field.

• Masking glaciers and big reservoirs in land water storage models.

• “Conditioning” bottom pressure from the OMCT model to alleviate
artifacts due to truncation.
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Results

• Time series of 3D loading displacements for 849 stations caused by

– atmosphere 1979.01.01 – now, latency: 15h.
– land water storage 1979.01.01 – now, latency: 15h.
– non-tidal ocean 2001.01.01 – now, latency: 45d.

• Time series of the above 3D loading displacements at 1◦ × 1◦ grid.

• Coefficients of loading harmonic variations at 11–20 frequencies for both
849 stations and at 1◦ × 1◦ grid.

• Coefficients of ocean loading displacements for both 849 stations and at
1◦ × 1◦ grid using model GOT4.8 and FES2012.

• Loadings are computed in the CM frame. Loading displacement
differences CF – CM are provided as well.

• Loading displacements are updated within 1 hour upon the model update.

In total, over 1,000,000 files, 200 Gb.
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Validation

Data: VLBI observations 2001.01.01 – 2014.07.02

Method: estimation of global admittance factors

A priori: toc fes2012, nto omct

Atm GEOS-FPIT UP 0.963 ± 0.023
Atm GEOS-FPIT EA 0.609 ± 0.049
Atm GEOS-FPIT NO 1.027 ± 0.041

Lws GEOS-FPIT UP 0.955 ± 0.016
Lws GEOS-FPIT EA 0.804 ± 0.029
Lws GEOS-FPIT NO 0.886 ± 0.024

Lws NOAH025 UP 1.220 ± 0.013
Lws NOAH025 EA 0.660 ± 0.030
Lws NOAH025 NO 0.826 ± 0.033
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Contribution to the geopotential

Companion-service of the contribution
to the geopotential due to

• atmosphere

• land water storage

• non-tidal ocean

• tidal ocean

2014.10.21 2014.10.22 2014.10.23 2014.10.24 2014.10.25
Degree/order truncation: 64;

The same geophysical models as for loading;

The same latencies as for loading.
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launched in 2014.

• Includes
– Atmospheric loading
– Land water storage loading
– non-tidal ocean loading
– tidal ocean loading

• Provides the contribution to the geopotential due to fluids

• Provides time series of displacements with 3–6h time resolution for
– ∼1000 space geodesy stations
– 1◦ × 1◦ grid
– on-demand

• Has latencies 15 hours for atmosphere and land water, 40 days for
non-tidal ocean loading.

• Validated against VLBI data

http://massloading.net
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What is next?

Further development:

• Using weather forecast to 0–24h in the future. Latency will be eliminated.
Accuracy degradation: 20% for the current instant.

• Using OPeNDAP for distribution of path delays, loading displacements
and the contribution to the geopotential

http://massloading.net/atm/ondemand.asc?dspl&
dspl.model=auto&
station(dspl,Annapolis,1130794.763,-4831233.803,3994217.042)&
station(dspl,MYsta1,1492233.328,-4458089.491,4296046.016)&
time(dspl,20141015T11:00:00,20141015T18:00:00)

• Automation of loading displacement and slant path ingestion:
development of a client library that communicates with the server
automatically:

get_loading ( char* config_file, load_struct *loading_result )
get_spd ( char* config_file, spd_struct *path_delay )
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Summary

• Computation of slant path delay from numerical weather

models is ready for routine data processing of all SLR

observations. Interface to GEODYN is available.

• A priori path delay through the atmosphere is expected to be

accurate at 1–2 mm level — 10 times better than using

surface pressure.

• Mass loading service that provides both loading displacements

and contribution to the geopotential is launched. Results are

available on-line for routine data processing.

This project was supported by NASA Earth Surface and Interior program.
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