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Lunar Reconnaissance Orbiter (LRO) — Laser Ranging (LR)
Overview

» Flight Segment:

- 3.81 cm diameter aperture mounted on |

igh Gain Antenna

- Fiber optic bundle carries the light to the LOLA detector #1
» Ground Segment:

- Transmit 532 nm laser pulses at <= 28 Hz
- Departure time stamped at ground station

Laser Station

Receiver telescope on HGAS couples LR
signal to LOLA

LOLA channel 1
Detects LR signal

Fiber Optic Bundle

Ten Participating Stations from the International Laser Ranging Service (ILRS)
» Fire times recorded at each station:

One LOLA Detector does both Earth and Lunar
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» Two range windows in one detector: 8 msec earth and up
to 5 msec lunar
»Range to LRO changes ~ 5-10 ms over an hour’s visibility

- Accuracy to UTC <100 ns
- Relative fire time error RMS < 200 ps (over 10 sec).
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LOLA/LR Clock Oscillator Long-Term Stability
Symmetricom 9500 series Oven Controlled Crystal Oscillator

LRO Clock Drift Rate Estimated from NGSLR
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» Oscillator long term frequency
stability is about +/-1.5e-12s
per day before removing the
temperature effect

» The drift rate of the LRO
project-supplied spacecraft
clock is approximately
1.00000006754 seconds per 1
s clock tick at present, and the
clock has been slowing down
gradually and steadily

» After removing a constant time
offset, a linear time drift, a
quadratic frequency aging, a
cubic frequency aging rate,
and a calculated light time, the
residuals are less than 15 us
for the entire mission, which is
~200 times better than the 3
mMS mission requirement

» RO sun-safe incidents
showed impacts on LRO
clock’s drift and aging rates
due to the change of clock
temperature

Ground Station Clocks
Long-Term Behavior Comparison

{ {
Q)
2 0.041 -
- [
> 0.021- Lo -
£
=
S -_———
c 07 L G ' —
D
Q2
T
§—0 02 -
g * NGSLR
g Monument Peak
"_8 =0.04~ - Yarragadee -
9 McDonald
S ‘ Greenbelt
2 -0.06- o - Grasse N
) 3 - Zimmerwald
E v
c
2
O -0.081 -
O)
l l l l l l l l l

200 400 600 800 1000 1200 1400 1600 1800 2000 2200
Day from 01/01/2009

»Ground stations are using different time sources, such as
Rb clocks, Cs clocks, H-masers, etc.

» Time at NGSLR has been monitored to sub-nanosecond
with an absolute accuracy of ~1ns and a stability mainly
governed by the station clock, 4e-15 for the hydrogen
maser (since January, 2013) and 1e-13 for the cesium
clock source (before January, 2013) .

»Using LRO oscillator as a common clock, long term
behaviors of most ground station clocks are compared with
respect to NGSLR (shown in the figure above).

»Comparison results for each station are shown in separate
figures, which are attached to the poster.
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