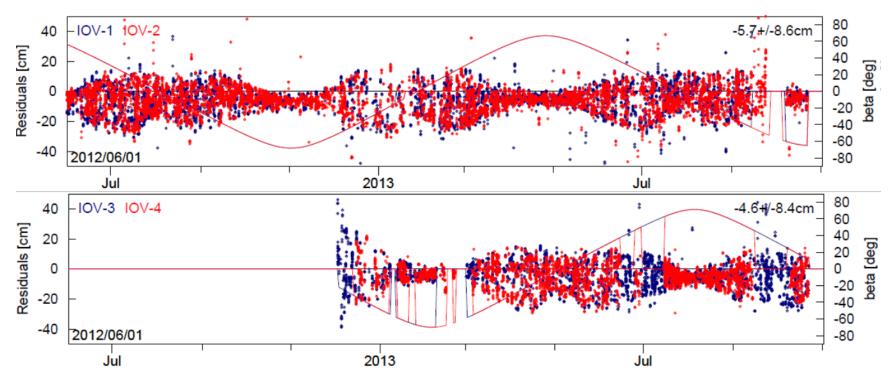


ILRS LARGE Meeting IGS Requirements

- Requirements from IGS
- Combination of GNSS and SLR
- SLR tracking of GNSS

TU Vienna, 26-April-2014

IGS Requirements



- From GGOS-RAS/Roscosmos Meeting, April 8, 2013
- Tracking network
 - Extension of multi-GNSS network
 - Multi-GNSS (MGEX), real-time
- Precise GNSS orbit modeling
 - GPS orbits currently at a 1d RMS consistency of 2cm
 - draconitic periods in geodetic time series
 - issues with orbit modeling for new types of satellites
 - requirements for improved radiation pressure modeling
 - requirements for independent orbit validation

IGS Requirements

Issues with Galileo IOV orbit modeling

- Orbits determined within MGEX
- Dependency of SLR residuals on Sun beta angle

Required Satellite Information

- Operations
 - timely information on maneuvers, configuration changes etc.
- Satellite reference frames
 - satellite body reference frame, center of mass position, view cone angles
- Satellite attitude
 - attitude laws for satellite body and panels as function of beta angle
 - in particular for deep shadow maneuvers, midnight turn, noon turn
 - accuracy of attitude law
 - measured attitude
- Navigation antenna
 - mechanical antenna position
 - lab measured antenna phase centers and nadir-azimuth dependent phase pattern per frequency

Required Satellite Information

- Signal characteristics
 - group delay calibrations, stability, thermal sensitivity
 - clock information, stability, thermal sensitivity
- SLR retro reflector
 - mechanical position in satellite body frame, type etc.
- Satellite mechanical and optical informations
 - dimensions, shapes of surfaces
 - optical properties for visual and infrared frequencies
 - thermal model for thermal emission modeling
 - radio emission power
 - mass at launch and mass history, nominal accuracy
 - strategy for momentum dumping

Orbit Validation

- Issue mainly for new types of satellites
 - Development of new empirical, semi-empirical, or analytical radiation pressure models
 - More or different parameters
 - Impact on shape of orbit
- Independent orbit model validation required
 - Orbit comparisons, orbit overlaps, orbit prediction
 - Validation with SLR
- SLR strategy for validation ...
 - ... dense observation
 - ... of selected satellite types
- What means "dense"? Number of NPs per revolution?

GNSS and SLR Combination

- GNSS is a one-way measurement technique providing pseudoranges
- As all clock corrections need to be determined, GNSS technique provides precise angular measurements
- SLR provides ranges
- GNSS and SLR thus provide precise 3d information of satellite positions
- Conclusions: Combination GNSS & SLR ...
 - ... reduces orbit-clock-correlations in GNSS
 - ... allows to develop improved rpr models
 - ... provides access of GNSS to the geocenter
 - ... would support the realization of Epoch Reference Frames

SLR Observation Strategies of GNSS

- Full SLR tracking of GNSS vs economic arguments
- Full constellation vs. dense observation of selected satellites
 - one satellite per orbital plane, per satellite type?
 - continuously or every few days?
 - how many observations per pass, per revolution?
- Strategies
 - reasonable coverage of orbital arc, e.g. 6 NP per revolution, to measure the orbit eccentricity and short periodic orbit perturbations
 - selected block types and orbital planes for orbit model validation
 - full constellation for new, well centered products such as epoch reference frames

SLR Observation Strategies of GNSS

- Strategy: Full constellation, 6 NP per revolution per satellite
 - for orbit model validation and combination
 - coordination of observations between stations
 - coordination in real-time due to weather issues
 - issue of range biases?
- Novel Strategies
 - quasi simultaneous observations
 - to cross-calibrate station biases
 - formation of single differences and double differences, ...